Light attenuates lipid accumulation while enhancing cell proliferation and starch synthesis in the glucose-fed oleaginous microalga Chlorella zofingiensis
نویسندگان
چکیده
The objective of this study was to investigate the effect of light on lipid and starch accumulation in the oleaginous green algae Chlorella zofingiensis supplemented with glucose. C. zofingiensis, when fed with 30 g/L glucose, synthesized lipids up to 0.531 g/g dry weight; while in the presence of light, the lipid content dropped down to 0.352 g/g dry weight. Lipid yield on glucose was 0.184 g/g glucose, 14% higher than that cultured with light. The light-mediated lipid reduction was accompanied by the down-regulation of fatty acid biosynthetic genes at the transcriptional level. Furthermore, light promoted cell proliferation, starch accumulation, and the starch yield based on glucose. Taken together, light may attenuate lipid accumulation, possibly through the inhibition of lipid biosynthetic pathway, leading to more carbon flux from glucose to starch. This study reveals the dual effects of light on the sugar-fed C. zofingiensis and provides valuable insights into the possible optimization of algal biomass and lipid production by manipulation of culture conditions.
منابع مشابه
The pivotal role of malic enzyme in enhancing oil accumulation in green microalga Chlorella pyrenoidosa
BACKGROUND The fast growing photosynthetic microalgae have been widely used in aquaculture, food, health, and biofuels. Recent findings in the diatom has proposed a pivotal role of NADP-malic enzyme in generation of NADPH as an important supply of reducing power for fatty acid biosynthesis. To test the lipogenic malic enzyme for fatty acid synthesis in green algae, here the malic enzyme gene Pt...
متن کاملIsolation and Characterization of a Lycopene ε-Cyclase Gene of Chlorella (Chromochloris) zofingiensis. Regulation of the Carotenogenic Pathway by Nitrogen and Light
The isolation and characterization of the lycopene ε-cyclase gene from the green microalga Chlorella (Chromochloris) zofingiensis (Czlcy-e) was performed. This gene is involved in the formation of the carotenoids α-carotene and lutein. Czlcy-e gene encoded a polypeptide of 654 amino acids. A single copy of Czlcy-e was found in C. zofingiensis. Functional analysis by heterologous complementation...
متن کاملNitrogen-induced metabolic changes and molecular determinants of carbon allocation in Dunaliella tertiolecta
Certain species of microalgae are natural accumulators of lipids, while others are more inclined to store starch. However, what governs the preference to store lipids or starch is not well understood. In this study, the microalga Dunaliella tertiolecta was used as a model to study the global gene expression profile regulating starch accumulation in microalgae. D. tertiolecta, when depleted of n...
متن کاملGenome-based metabolic mapping and 13C flux analysis reveal systematic properties of an oleaginous microalga Chlorella protothecoides.
Integrated and genome-based flux balance analysis, metabolomics, and (13)C-label profiling of phototrophic and heterotrophic metabolism in Chlorella protothecoides, an oleaginous green alga for biofuel. The green alga Chlorella protothecoides, capable of autotrophic and heterotrophic growth with rapid lipid synthesis, is a promising candidate for biofuel production. Based on the newly available...
متن کاملDynamic metabolic profiling of the marine microalga Chlamydomonas sp. JSC4 and enhancing its oil production by optimizing light intensity
BACKGROUND Marine microalgae are among the most promising lipid sources for biodiesel production because they can be grown on nonarable land without the use of potable water. Marine microalgae also harvest solar energy efficiently with a high growth rate, converting CO2 into lipids stored in the cells. Both light intensity and nitrogen availability strongly affect the growth, lipid accumulation...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2015